
7 Al-A103 306 WHARTON SCHOOL PHILADELPHIA PA DEPT OF DECISION SCIENCES F/G 9/237 I HANDLING THE TIME DIMENSION IN GENERALIZED DBMS. (U)

MAY al 6 ARIAV. H L MORGAN MDA903-8OC.0093

UNCLASSIFIED 81-05-06 N

17LEVEL$[

- a !,,<, (f<,

0
MDM: Handling The Time Dimension /

.1in Generalized DBMS, I

Gad/AriaI *~ Howard L.-/Morgan

81-05-06 C-7, *

C

Department of Decision Sciences
T*e Wharton School

University of Pennsylvania
Philadelphia, PA 19104

Thi research was supported in part by DARPA under contract
/_CMDA - and by ONR under contract N00014-75-C-0462 with theM. DA, - ' C - ' ~IT, :ftiversit of

. - .DITRIB-TION r A

Appr -d ,' relea.;

I Ie ILaiA

Page 2

ABSTRACT

The sense of time is implicit in almost all human activity, yet it is

rarely reflected in the computer database views of these activities. This
paper offers a method of dealing with time, modal storage and retrieval,
and describes formal and practical realizations of the concept.

The conceptual framework of Modal Data Management reflects three
years of experience with the DATA (Dynamic Alerting Transaction Analysis)
system L, in which a time oriented DBMS has been conceived, designed
and actually implemented.

The paper first anchors the Modal Data Management concept in the
context of the relevant research in Information Modelling and storage
technologies, followed by a discussion of the architectural and functional
attributes of the DATA system. The major lessons from the DATA experience
are then presented, paying special emphasis to their impact on the design
of future versions of the system.

The concluding comments deal with specific implications of the Modal
Data Management in the domains of DBMS usability and Software Engineering.

FAccesslcn For

-i

P i: V

D i:? r :;, ,,.,

Page 3

1.0 INTRODUCTION

We live in a four-dimensional world, yet most computer based systems

have limited people to dealing with one or two dimensional objects. The

Spatial Data Management System [10], has made an attempt to provide

excellent graphical and spatial (3-dimensional) interface to databases.

In our real world, however, the fourth dimension, that of time, is equally

important. It is our contention that time is not merely another

dimension, or another data item tagged along with each tuple, but rather

something human users treat in very special ways, since we have so much

psychological insight into the meaning of variations with time.

Under the prevailing practices of DB design, largely due to binding

constraints on storage and processing capacities, the DB is usually a

tenseless collection of "latest available" data. Viewed from the

perspective of time, the resulting DB necessarily contains an inconsistent

and thin "data-layer". It is important to note that the above design is

clearly not a result of the unavailability of temporal data, but rather in

spite its abundant availability - one can hardly conceive any form

("transaction") where some temporal data (e.g., date) is not a mandatory

item.

Modal Data Management aims at providing the missing link between the

deepening recognition of the desirability of time-information in a

database and the intensifying prospects of the feasibility of the immense

storage and computational capacities which are necessary for that task.

Page 4

The term "Modal Data Management" is used in this article as a generic

reference to the storage, retrieval, and alerting on data, where these

functions address directly the inherently dynamic nature of the "real

world" which we are trying to represent in Information Systems and their

Databases.

"Modal Data Management" intends to invoke the notion of the hierarchy

of variability in formal logic, and use the conceptual analogy between

Formal Logic and DBMS for clarifying the key idea behind the MDM. In this

analogy, the Propositional Logic is the counterpart of the early phases of

data management, where data was typically "owned" by corresponding

programs. Predicate Logic, the next level in the hierarchy, distinguishes

the statement from its argument, which is paralleled in the DB domain by

the separation between structure and content [9].

Temporal Modality enhances the variability of the formal description

and manipulation of predicates by allowing for temporal changes in

individual arguments as well as temporal changes in the structure of basic

premises and meaning of predicates. Modal Data Management, analogeously,

addresses directly the issue of dynamics, thereby extending the current

framework of DBs to handle time in an explicit manner.

The "Conceptual Information Model" (CIM) forms the semantic basis for

the contents of the Information System. In a recent paper on the

development of such conceptual models, [3], "Time" is perceived as one of

the most essential concepts, and models that are 'based on the time

perspective ... provide the conceptual Data Base Model (and] the

Conceptual Processing Design with better understanding' of the

application and the requirements..." (p. 4 01).

Page 5

MDM addresses the very same issue, namely, the preservation of the

dynamic in the modeled world, and therefore appears as the "natural"

device for capturing the spirit of the time oriented CIM.

Another development in the IS domain is the emergence of the notion

of Decision Support Systems (DSS). As has been noted (e.g. [6), [121)

DSS's major contribution is to the understanding of the relevant problems

and the impact of possible courses of action. Understanding, however, as

opposed to mere knowledge, is intimately related to the notion of time.

"Time, which binds the direction of change, is the rational principle

which brings meaningful changes out of chaos; it makes the notion of

causal sequence and development possible" ([16], p.18, on the Time in

Plato's thought). This last observation suggests that Modal Data

Management will probably constitute the data management core of an

increasing number of Decision Support Systems, when seeking to investigate

causal sequences.

On the supply side, current trends in the development of processing

(e.g. associative) and storage (e.g. optical disc) capacities brings us

nearer to the point where storage of huge amounts of data, like the one

conceivably needed for the storage of "complete histories", will be

feasible. Copeland (51, when trying to answer the question "what if mass

storage were free?", speculates that a write-once, non-erasable,

time-stamped Database that unifies the access to current and past data

will be the likely result of the changes anticipated in the cost and

performance of mass storage devices.

Page 6

This is exactly the kind of Database that has been identified as the

core component of the Modal Data Management, and has been designed and

implemented under the name of the "DATA System", for Dynamic Alerting

Transaction Analysis System [13]. The rest of this paper is dedicated to

the summary of the three years of experience with two generations of the

DATA system and the implications of this experience on the third

generation of the system, namely, the evolving concept of Modal Data

Management.

Section two summarizes the logical features of the DATA System while

the following section surveys the history of the implementations, assesses

them, and discusses the major lessons from these experiences.

Section Four discusses the significance of the system and the Modal

Data Management in DB usability (methods of use, reliability,

recovery,...) and related issues of Software Engineering (software

development, DB-restructure,...).

2.0 TIME IN MDM

A general discussion of the concept of time is clearly beyond the

scope of this paper. The subject has interested philosophers, physicists,

mathematicians, logicians, psychologists and others. As a result the

concept has had many mutations and still invokes substantial confusion and

controversy. (For general reference and comprehensive survey see [8],

[161). A basic consensus, however, is that "time" is an inherent and a

Page 7

universal dimension of any human experience.

In contrast with the consensus, temporal considerations have usually

been factored out of the problem domain in general computer and Al

applications. Nevertheless, such consideration start to surface, and

examples of similar explicitness are [11] in the AI domain (focuses on the

temporal understanding of time oriented data), and [1), which deals with

the Conceptual Level of DBMS (it focuses on the identification of the

necessary formal features for capturing the semantics of time, time

dependent information and various time domains).

Since we are committed to an explicit treatment of the time dimension

we cannot elude the time-controversy and feel obliged to identify the kind

of time we intend to capture in the Modal Data Management.

Reflecting the various approaches to the term, our DB time is:

1. Linear and unidimensional - we refer to a "date line" or "world

line" imagery, and the "arrow of time", namely the orientation of

events such that they always flow in one direction, from future,

to present, to past.

2. Absolute and objective - we use the (discarded) Newtonian

assumption that time has constant flow, independent of an

observer's perception. We do not attempt to deal with the notion

of experiential time. This is, though, one of our major concerns

in the display of time oriented data.

di

Page 8

3. Non-hierarchical - namely, we do not treat time periods and their

interrelationship as far as stored data is concerned.

4. Explicit - recorded events contain an explicit and unified

representation of their "time", and fuzzy specifications which

are very common in human expressions, are not valid in the

current MDM Database.

We are aware of the severe limitation posed by these conventions. In

particular., they put limits on the complexity of stored data and, in

certain cases, on its usefulness. We nevertheless feel that the structure

of our "implemented time" is necessary to make the problem "managable".

We need to learn more about capturing time before we unleash the full

potential (and problems) of more complicated and realistic time concepts.

3.0 THE LOGICAL FEATURES OF THE DATA SYSTEM*

The DATA System supports a time-qualified user view of a data base,

namely, it provides not only the (unqualified) most recent view supported

by ordinary DBMS, but also the view of the database as it existed at any

given point of time.

* The DATA System has grown out of ideas contributed by the authors,

Rob Gerritsen of IDBS, Prof. Peter Buneman, Keith Kimball and David
Siegel. Their help is gratefully acknowledged.

Page 9

The DATA System is a relational DBMS where the users view of the data

differs substantially from the actual structure of data storage. To

support the aforementioned multiplicity of views, the DATA System does not

maintain the traditional correspondence between "records" and real world

entities - it contains rather cumulative, time ordered, lists of

transactions. In this way, the status of an entity at any given point of

time, say, t, is being extracted from the collection of transactions

relating to that entity, which have been recorded prior to time t, while

ignoring all the transactions since t.

For example, the current status of an employee ("current" is just a

special case where t-"now") is derived from his/her "hiring transaction"

and all the transactions that have followed as the time passed, namely,

change-of-address, pay-raise, job-assignment and the like. Another

example is visualized in Figure 1.

Aug
H o17 MMorgan

U. of PSep' 7

G. Ariav

H.L.Morgan TlAi
j ~~Harvard OasOO

H.MORGANU. of P. Ph.D Stud............
H G Ariav returns to Tel-Aviv U.(MSc)

.... Ariav lands at Penn for Ph.D studies

.................. Morgan goes to Harvard

Morgan returns to Penn

FIGURE 1. The Logical Storage in the DATA System.

Page 10

Physically, transactions are always appended to the DB, and they are

never modified or deleted. Nevertheless, they can be one of three basic

types, which reflect the three possible types of events in the modelled

world:

1. "Addition" - the introduction of a new instance of an entity,

2. "Modification" - a change in an attribute of an existing instance

of an entity, and

3. "Deletion" - the removal of an existing instance of an entity.

Beyond its type, each transaction contains its time stamp, a pointer

to the previous transaction related to the same entity and eventually the

new value of any data changed by the transaction.

This structure has the composite effect of addition, modification and

deletion of "records" in the ordinary DBMS, though the dynamic database is

constantly growing.

This underlying structure resembles the human perception and

cumulative knowledge of the "world", where, for instance, the firing of an

employee removes him from the current list of employees but does not

"delete" his association with the organization at a previous point of

time.

The architecture of the DATA systems builds on the notion of

"Differential Database" 1151, where a small data set contains changes to a

large (read only) Database. The DATA system actually extends that notion

to the point where the background database is being eliminated (it is an

Page 11

empty set) and its "read only" characteristic now applies to the

collection of the "changes".

An overview of the actual implementation history of the DATA system

is defered to the next section. In the current discussion we will

concentrate on its logical structure.

3.1 General Structure

The system includes two basic procedures (see figure 2), namely, the

DB/DESCRIBE ("DDL" processor) and the DB/PROGRAM ("DML" Processor).

The DB/DESCRIBE module elicits and maintaind the description of the

DB. The required elements are the identification of the DB, the various

relations in it, and the definition of the various domains in the

corresponding relations. These definitions are stored in the predefined

relations DATABASE, RELATIONS and DOMAINS, which together constitute the

definition of the DB to be maintained by the DATA system.

DATABASE

DEFINITION

in~

TPANSACT I CN
databases trans- MODULE

actions

relations
DB/DESCRIBE DB/PROGRAM

4 eval.

domains alerts ALERTER
MODULE

alerters

FIGURE 2. Diagrammatic Overview of DATA Systems- Components.

Page 12

The database is accessed by running a program called DB/PROGRAM.

This program manipulates two basic structures. The first structure is

called TRANSACTIONS and consists of a time ordered list of transactions.

The format of this structure is:

TRANSACTIONS RELATION (TRANS-DBNUMBER KEY NUMBER;
TRANS-NUMBER KEY NUMBER;
TRANS-TYPE NUMBER;
TRANS-RELNUMBER NUMBER;

TRANS-PREVNO NUMBER;
TRANS-YEAR NUMBER;
TRANS-DAY NUMBER;
TRANS-HOUR NUMBER;
TRANS-MINUTE NUMBER;
TRANS-SECOND NUMBER;
TRANS-DATA ALPHA 512)

The TRANS-DBNUMBER identifies the database affected by the transaction.

The TRANS-NUMBER is a number assigned to distinguish betwen transactions

on a given database. The TRANS-DBNUMBER and the TRANS-NUMBER identify a

transaction. The TRANS-TYPE specifies the type of transaction. The types

of transactions are addition, modification and deletion. The

TRANS-RELNUMBER is the relation number of the tuple being affected by this

transaction. TRANS-PREVNO is the TRANS-NUMBER of the previous transaction

on the entity. All transactions upon an entity are linked via this

domain. TRANS-YEAR, TRANS-DAY, TRANS-HOUR, TRANS-MINUTE and TRANS-SECOND

datetime stamp the transaction. TRANS-DATA is the new tuple. In practice

only the number of characters necessary to contain the new tuple are

stored in the database.

The other basic structure manipulated by DB/PROGRAM is called

INDEX-SETS. The tuples of INDEX-SETS are used to locate the most recent

transactions upon the entities. This structure provides the head of the

Page 13

linked list of transactions upon an entity. The structure is as follows:

INDEX-SETQ RELATION (IS-DBNUMBER KEY NUMBER;
IS-RELNUMBER KEY NUMBER;
IS-KEY ALPHA 256;
IS-DELETE NUMBER;
IS-TRANS-NUMBER NUMBER);

The IS-DNUMBER and IS-RELNUMBER identify the database and relation to

which the key belongs. IS-KEY is the key uniquely identifying a tuple.

IS-DELETE is boolean indicating whether or not there is a current tuple in

the database with the key value and then was deleted from the database.

IS-TRANS-NUMBER is the TRANS-NUMBER of the last transaction upon the

entity. This provides the head of the linked list of transactions upon

the entity.

The repertoire of DATA's DML commands includes four sets, summarized

in figure 3 and discussed briefly below. In our discussion we concentrate

on the specific features of DATA which distinguish it from traditional

DBMS.

Page 14

DATA COMMANDS

I. DATA MAINTENANCE:

ADD
MODIFY
DELETE

II. DATA ACCESS:

SHOW (for perusal of the DB definition)
DISPLAY
RUNDOWN

(chained DISPLAYS for perusal of the "history" of an
entity from given point in time and on)

FIND

III. TIME-CONTEXT HANDLING:

SET-TIME
(allows the viewing of the DB at a specified point of
time)

ROLLBACK (backs the DB up in time)

IV. ALERTING:

CREATE
DISPLAY-ALERT
ENABLE
DISABLE
CANCEL

FIGURE 3. DATA's DML Comands

3.2 DATA MAINTENANCE COMMANDS:

The ADD command creates a new tuple in the database. This command

contains a relation name and initial values for various domains. It

verifies that no tuple logically exists with the same key value as the

tuple being created, and a transaction of type "Addition" is entered on

the list of transactions. If there was a previous transaction on the

r

Page 15

entity, the corresponding tuple of INDEX-SETS has its IS-DELETE domain

reset. This tuple points to the new tuple of TRANSACTIONS.

The MODIFY command requires a tuple to be currently located (via a

previous FIND or ADD command). This command contains a relation name and

new values for non-key items. The tuple is entered on the list of

transactions with the new values of the non-key items. The corresponding

INDEX-SETS' tuple is pointed to the new transaction.

The DELETE command deletes logically a tuple from the database. This

command contains a relation name and values to which the key must match.

First a tuple is located by matching the specified key values. Next a

transaction is appended to the list of transactions with a type of

deletion. Finally the tuple in INDEX-SETS is marked with IS-DELETE as

true' and pointed to the recently created transaction.

3.3 DATA ACCESS COMMANDS

The FIND command requires a relation name and values to which keys

must match. The program searches INDEX-SETS for a tuple matching the

specified key values. Upon successful location of the corresponding index

tuple, the corresponding transactions for this entity are read until one

is found with a datetime stamp less than the time that the database is

being viewed from. If such a transaction exists and its type is not a

deletion, the command is successful, else an exception is returned stating

that there was no such tuple at the specified time.

Page 16

The DISPLAY command causes values in the current tuple of <relation

name> to be retrieved and displayed.

The RUNDOWN command "replays" the sequence of recorded events that

relate to a specified tuple between two specified points in time. This

command requires a relation name, tuple's key and a specification of the

desired time interval. The starting point of the sub list is being

located and all the transaction from that point, up to the specified end

time, are being retrieved and displayed.

The SHOW command is used to view the definitions in the DB

Description. SHOW by itself displays all relation names of the database.

SHOW <relation name> displays the domain names of that relation. This is

accomplished by reading the RELATIONS and DOMAINS relations.

3.4 TIME-CONTEXT HANDLING COMMANDS

The SETTIME command allows the database to be viewed from previous

points in time. SETTIME-CURRENT states that the database should be viewed

from the current time. SETTIME by itself asks the time that the database

is being viewed from. SETTIME- 77/155 @ 23:12:11 implies that the

database should be viewed as it existed at 11:12:11 p.m. on the 155th day

of 1977.

The ROLLBACK command backs up the database to a specified point in

time which allows the user to view and operate on the DB content at that

point in time. This is accomplished by simply updating pointers in

Page 17

INDEX-SETS and then reading the corresponding TRANSACTIONS tuple. If the

TRANSACTIONS' tuple is beyond the rollback point, the linked list of

transactions on this entity are read until one is found before the

rollback point. If a transaction is found before the rollback point, the

INDEX-SETS tuple is updated to point at this transaction and the IS-DELETE

domain is updated based on the type of transaction. If no transaction is

found before the rollback point, the INDEX-SETS tuple is deleted.

3.5 ALERTING COMMANDS

An Alerting system provides facilities to monitor changes to the

database in order to perform some action whenever certain conditions

become t rue. Alerters are the basis of the alerting system. An alerter

associates a name (of the alerter), a condition to be evaluated, and an

action to be taken when the condition is met. An alerter can be thought

of as a program that continuously monitors the database and takes some

specified action when the specified condition becomes true.

Alerting changes the concept of a database management system from a

passive to an active system. Previously the user/database interface

consisted of a subroutine call. The user would query the database system

and then wait for a response. The user program and database system did

not operate in parallel and the database responded only when spoken to.

Under an active database system, user programs and database systems

operate in parallel and both are capable of action. Alerters in this

system are restricted to simple alerting conditions [4], and the

associated action is merely a display at the terminal. Further discussion

of Alerters and the various types of Alerters is included in the section

Page 18

that highlights the system's features, later on. The creation of an

alerter is done by the ALERT command. For example:

ALERT BIGRAISE (MODIFY OF PEOPLE) -

SALARY.NEW > SALARY.OLD * 1.1

BIGRAISE is the name of the alerter. The MODIFY OF PEOPLE states that the

alerter should be evaluated after the modification of the relation called

PEOPLE. The condition is SALARY.NEW > SALARY.OLD*l.1 (i.e. a 10% raise).

The Alert is being stored in a separated type of relations (see

Figure 2).

DISPLAY-ALERT <alert name> causes the text and state of <alert name>

to be displayed. ALERT <alert name> - CANCEL causes <alert name> to be

cancelled. An alerter can be in one of two states. If an alerter is

enabled, it is a candidate to be triggered. If an alerter is in a

disabled state, the alerter may not be triggered until it is enabled. The

alerter may be placed in these states by the commands ALERT <alert name> -

ENABLE or by ALERT <alert name> - DISABLE.

4.0 ASSESSMENT OF DATA'S IMPLEMENTATIONS

The System has been implemented as a relational DBMS, on top of

conventional network (CODASYL) DBMS, and providing a stand-alone

DB-access, namely the various commands to access and maintain the DB are

not embedded in a host programming language, but could be conceived as a

Page 19

user-interface of DB-server in a multi-tasking environment.

As has already been mentioned, the system has evolved through two

versions of implementation. DATA-I was originally constructed on a

Burroughs System, using DMS-II, a CODASYL compatible DBMS, as the

underlying data management facility.

The second version, DATA-II, was aimed primarily at improving the

system's availability and portability through the use of PASCAL as the

implementation language and SEED, an extremely portable CODASYL compatible

DBMS (14], as the basic tool for the data handling. As far as the

functional structure is concerned, the repertoire of commands was enhanced

by the introduction of the RUNDOWN command, to improve data accessibility.

The three segments of the DB (figure 2) are realized as three groups

of (CODASYL) records and sets, as depicted in figure 4. Note that DATA-Il

tracks and monitors the data entry, and records automatically the identity

of the person who introduced the transaction into the DB.

Page 20

RELATIONS DOMAINS

1name 1. name
2. key
3. type a. DB DESCRIPTION
4. posit'n

REL-DOM-SET 5. size

DOM-REL-SET

LINK-REL

INDICES TASCIN

1. key 1. chars
2. "delete" flag 2. reals b. TRANSACTIONS

3. integers STORAGE

M ETA-DATE

I. date
2. type
3. user-name

CONDITION ALERTER

1. event type 1. norme c. ALERTERS
2. relation name 2. text

STATUS

1. enable :fla~g

Figure 4. DATAs Data Structures

During the years of experimenting with the two versions of the system

we have clearly learned a lot about what we have labeled as Modal Data

Management. Following is a summary of our major observations and the

resulting recommendations for the upcoming version of the Modal DBMS.

Page 21

1. The concept has proved to be feasible -- It has been demonstrated

in couple of test applications. It was found to be useful and

was generally well received.

2. The notion of the recorded time involves some confusion, namely -

is it the time of recording or time of occurance? In the latter

case, if the DB resides on a write once media, transactions need

to be stored in a "Quiscing-Area" first, and moved (periodically)

in the correct sequence to the permanent storage area.

3. The stand-alone, user oriented DB access was found inadequate.

While the notion of "DB-server" fits our computer network

environment (DARPA), the DB-server (as a "central Version") has

to function as an interface between the DB and programs that run

against it.

4. While the ability to retrieve sequences of events proved to be a

powerful feature, the conventional modes of representation and

display do not assist in effectively invoking the sense of time

in the user/viewer. This observation has ushered in a parallel

research effort to explore more powerful methods for the display

of time oriented data, [2].

5. The system has emphasized the containment of the dynamics in the

data itself. It became, however, apparent that the system has to

address the metadynamics, namely, the temporal changes in the

schema itself. This observation is even more pronounced in the

use of write-once media, and it seems to be the key issue for the

temporal unification of access to data. In terms of the future

..

Page 22

design, this means that we need to support multiple, time ordered

(internal) schemata, through which programs will gain access to

the portion of data that has been recorded while the

corresponding schema "prevailed". Under the same notion, the

SHOW command also needs to have certain time-context.

Incidently, this observation has inspired us to select the term

Modal Data Management as label of our effort.

6. The relational design/appearance of the DB has been exploited

successfully in structuring the DB and the control over the

storage and maintenance of data. However, the user does not have

any of the more powerful relational operators at his/her

disposal, for instance he/she cannot JOIN two relations at a

prespecified time context to deduce information from the

transient view of the DB.

7. The architectural decision to support only simple alerters as an

integral part of the DBMS seems to be justified. The isolation

of the complex alerting in a dedicated module simplifies

substantially the DB/PROGRAM.

8. In accessing data, some capacity to deal with fuzzy time

expressions seems to be necessary, e.g, to operationalize the

expression "about six years ago".

9. Supporting the dynamics of the data necessitates the use of

internal identification of entities, since we cannot assume -- in

the long run -- that the logical keys will remain unchanged.

Page 23

10. Efficiency consideration - a balance must be struck between the

storage of single transactions and duplication of the cumulative

status of the entity. Similar concern is the possible

distinction between "relatively stable" and "relatively-active"

parts of relations, and the response time implication of

implementing such a structure.

11. The system supportSonly questions of the type "what happened at

time T?" Where T is a temporal expression (point or an interval).

The other necessary time oriented question is "when did event X

happen?" where X may be of various levels of complexity.

5.0 IMPLICATIONS

The core Database of the Modal Data Management, as has been developed

in the previous sections, has some major (potential) implications in the

domain of Database Usability and in certain aspects of Software

Engineering. Some of the implications, however, affect both concerns.

For instance, improved testing conditions will result in more stable

systems which will in turn, increase the systems usability. For the sake

of clarity, such implications are arbitrarily classified in one category,

based on our perception of its primary effect.

Part of the implications stem from the underlying "differential file"

approach (151 while another part is due to the unified access to current

and past data, (partially speculated or alluded to in [5]), yet some

implications are unique to the architecture and concepts embodied in the

i
Page 24

system.

5.1 Usability

In this domain, the major impact of the Modal Data Management is in

the enhanced meaning and usefulness of the DB to set of traditionally ill

served users, the support of Complex Alerting, the improved basis for DB

integrity, and increased availability. Following is a brief discussion of

each.

5.1.1 Functional Support

Following is a demonstration of th: new capacities provided by the

MDM concept; It is clearly just one single example out of many.

"Time-Travels" are an essential component in Business Planning in general,

and especially in the Retrospective Analysis, namely in the attempt to

trace and understand performance deviation. This necessitates the ability

both to "freeze" the state of the "knowledge-about-the-world" (i.e., the

Database) at the time of the original Planning and to reconstruct that

"frozen" view at a later Point in time to answer questions like "what

would have been the projected performance if we had known at that time

what we know today about the production process".

The effort required for such advanced Decision Support is clearly

beyond the capabilities o'f typical current systems, and believed to be a

major reason for the rare attempts to conduct such Retrospective Analyses

[7J.

Page 25

"What/Where/Who is ... are questions of primary importance and

justifiably dominated the scene of data management. "What/Where/Who

was ... " is a question that people ask also quite often, especially while

trying to discern and understand causal relations. Functionally, the

Modal Data Management treats these two types of questions symetrically,

thereby extending substantially the range of the "What if" questions that

the DB can support.

5.1.2 Complex Alerting

Previous works in this area [41 have identified three levels in the

hierarchy of alerting conditions, starting with "simple", through

structural" and ending with "complex" alerting conditions.

Simple alerting conditions deal only with one relation and the

condition can be evaluated by referencing only the old and new copies of

the tuple being changed. An example of a simple alerting condition is

"tell me when anyone receives a raise over 25%".

Structural alerting conditions deal with changes in the structure of

the database. These require the monitoring of more than one relation. An

example of a structural alerter is "tell me when a person under 30 years

of age owns a car priced over $10,000". This requires that both the CARS

and PEOPLE relations be monitored.

Complex alerting deals with a more global view of the database, and

it has been broken down into two classes. The first class of complex

alerting conditions require the use of time. An example of a time

spanning alerting condition is "tell me when a car has three price

Page 26

increases in one year". The second class of complex alerting conditions

are statistical alerts. An example of a statistical alerter is "tell me

when the average price of a car is over $5,000".

The Modal Data Management DB clearly enables all the three levels, in

particular it supports the complex alerting conditions which require the

ability to view the DB at previous points in time, as well as the tracing

of the changes and sequences of changes the entities have undergone.

A different aspect with regards to alerting is the unique environment

for testing proposed alerters. Through the preservation of the dynamics

in the modelled world it allows to repeat sequences of events and

simulate, at will, actual past scenarios. The long and not so successful

search for a test environment for implemented alerting systems has taught

us about the importance of that feature. Beyond that, it supports complex

modes of pattern recognition and advanced data analysis.

5.1.3 DB Integrity

No information is ever lost due to update when using the MDM database

since the physical database is simply a list of transactions, and once a

transaction is entered on the list, it is never modified.

The database provides the ability to place consistency constraints

that could not be placed on a conventional database. An example of such a

constraint is "accept no more than ten changes from a user within one

hour". This constraint can be enforced by viewing the database as a

series of time-stamped transactions, in which it seems to be difficult to

hide nefarious activity.

Ii
Page 27

5.1.4 DB Availability

A MDM database can be easily dumped and restored - The list of

transactions are simply appended. Moreover, the only part of the files

which need to be dumped are those added since the last dump. This

substantially reduces the time required to dump the database. Since

transactions are simply appended, there is no danger in dumping the

database while it is online.

Fast recovery from hard loses is easily provided. If a block on the

disk is destroyed, it can be simply reloaded from a backup dump and

processing can continue. This is possible because transactions are never

modified once they are entered on the list of transactions. The database

could be allowed to run while blocks were being copied.

Soft loss situation occurs when programs incorrectly affect the

content of the DB. The Modal Data Management DB provides recovery from

soft loss without maintaining a log tape. Backing up the database to a

previous point in time is accomplished by simply discarding all the

transactions that were recorded after the error had occurred.

5.2 Software Engineering

The major impact that the concept of MDM has on Software Engineering

is in an improved program-development environment and elimination of some

design anomalies. The more impressive implication, however, is the

elimination of the need for DB-restructuring. This is a result of the

basic 'Aodal premise of the system - it internalizes changes in the data

and in the structure as well.

Page 28

5.2.1 Program Development

The development of application programs can be simplified by a MDM

database. At some desired point in time the list of transactions could be

branched into two separate lists (see figure 5). One list would

constitute a production system and the other list would constitute a

developmental system running in parallel. Both systems would share the

same base list of transactions. Any program being tested would update the

database via the developmental list of transactions. These changes will

not affect the production database. Thus programs can be tested against

the large central database without affecting the production database.

4

"Production "Be "Developmental
Dataase"LisDatabase"

records__
FIR .added in a

productiono
("1real"f)
records

FIGURE 5. Test Data in a "Fork" Mode

Page 29

This mode of operation overcomes, to a great extent, the chronic

problems of test data and the need for realistic operational conditions in

the test phase.

5.2.2 Mixed Access Anomalies

Some applications are required to be online for long periods of time

and still require reports to be generated, e.g, accounting reports as of

end of period. This has lead to awkward models in order that the reports

may be generated with consistent data. The MDM's DB could discard these

awkward models since it provides the ability to freeze a program's view of

the database. Thus online updating of the database could continue while

the report is being generated.

5.2.3 Elimination Of DB-restructuring

We use the term restructure to indicate changes in the logical

structure of the DB, and differentiate it from "reformatting" - changes to

the physical structure. Both constitutes DB-Reorganization, as it is

being defined in [18]. Usually all data bases need sometime to be

restructured, depending on the rate of the relative decay in the

functional capabilities of the system as time passes and the user

environment evolves and changes.

Common instance where some restructuring is inevitable are (181:

internal organizational change (e.g., workers are assigned now to two

projects instead of one), external organizational change (e.g., merger,

where customer bases are consolidated) or legislation (e.g., dropping data

Page 30

items not necessarily required).

DB-Restructuring is usually a very complicated task, and in svite

some preliminary accumulation of experience, theoretical framework and

sound practical guidelines are non-existent or just emerging.

Nevertheless, the subject is gaining increasing attention, and will

continue to do so as complex databases become more common.

The penalty for restructuring, beyond the obvious direct effort in

its design and implementation, is twofold. First, it may involve a

relatively long period of lower availability of the DB, and second, which

is virtually neglected, is that it reduces substantially the accessibility

of past data, for clear technical as well as behavioral reasons. The

Modal Data Management practically dissolves the problem by internalizing

the change itself and maintaining multiple schemata, each of them

associated with certain time period and serves as basis for access to data

pertaining to that period. Note, however, that the continuity in the

factual basis is preserved through the backward pointing included in each

transaction.

By lowering the cost of getting results equivalent to traditional

restructuring, we clearly increase the incentive to keep the functional

capabilities of the system closer to their "ideal" position. In a sense

we are managing the DB Definition along the MDM conventions! This concept

can be extended to include software modules, namely both schemata and

modules will never be deleted, and rather serve as a "Time Dependent

Access Method". This notion integrates into the system possible solution

to the issues that are motivating the emerging concept of Software

Configuration Management [17].

Page 31

6.0 CONCLUSION

Modal Data Management provides an alternative to the conventional

notions of DBMS, and enhances it substantially in terms of usability.

This is not to say that existing systems do not handle time.

Conventional systems do deal, in certain cases, with time oriented data

(e.g., salary payments in the current budget year, sales summary for the

current year) and in some cases they do it even quite extensively (for

instance, data concerning securities in Stock Exchange DB). However, this

is usually the result of a primary design decision, which means complete

concentration on the time aspect, at the expense of different views of the

data. For example, in typical Stock Exchange DBMS, process oriented

questions, e.g, "what has been the volume of trade by agent XYZ" are

answerable only by using a separate DB. Another phenomenon in the time

handling within the context of conventional DBs is the

time-discontinuities in the availability of temporal data due to a

periodic "clean up" (e.g. last year salaries are being removed from the

DB on December 31st, while actually inquiries to that data is very likely

to occur even later).

The Modal Data Management preserves the basic, implicit nature of

time, i.e, even though we may not be fully aware of it, we are constantly

moving in time. As in real life, events recorded in the MDM's DB are

necessarily anchored in a temporal context, apart from other semantic

context.

S------------ -.

Page 32

Modal Data Management also smoothes the transition from one "world

view" to the next, recognizing that we do not live in a pre-ordained

world. In so doing it also mitigates some of the major problems that

Systems Analysis has in dealing with dynamic processes. Given the highly

dynamic nature of office processes, our current attention is focused on

building an MDM system for OFFICE AUTOMATION processes. This must deal

not only with structured fields but also with text.

Page 33

References

1. Anderson, T.L. "Database Semantic of Time", Ph.D Dissertation,
Computer Science Dept., U. of Washington, 1981.

2. Ariav, G. "Graphic Output for 'Non-Graphical' Databases", in
preparation.

3. Bubenko, J.A. "Information Modeling in the Context of System
Development", Information Processing 80, S.H. Lavington (Ed.),
North-Holland/IFIP, 1980, 395-411.

4. Buneman, O.P., and Morgan, H.L. "Implementing Alerting Techniques in
Database Systems", Proceedings of the IEEE Computer Society's First
International Computer & Applications Conference, November 1977.

5. Copeland, G. "What if Mass Storage Were Free?", Proceedings of the
1980 Workshop on Computer Architecture for Non-Numeric Processing, ACM
and IEEE, Pacific Grove, CA, 1980, 1-7.

6. Donovan, J.J "Database System Approach to Management Decision
Support", ACM Trans on Databse Syst., 1, 4 (December 1976), 344-369.

7. Emery, J.C. Personal Communication.

8. Fraser, J.T., (Ed.) The Voices of Time, George Braziller, Inc., New
York, 1966.

9. Gallaire, H., and Minker, J., (Eds.) Logic and Databases, Plenum
Press, New York, 1978.

10. Herrot, C.F. "Spatial Management of Data", ACM Trans on Database
Syst., 5, 4 (December 1980), 493-513.

11. Kahn, K.M. "Mechanization of Temporal Knowledge", Massachusetts
Institute of Technology Technical Report MAC-TR-155, MIT, Cambridge,

Mass., 1975.

12. Keen, P.G.W., and Scott Morton, M.S. Decision Support Systems: An
Organizational Perspective, Addison-Wesley, Reading, Mass., 1978.

13. Kimball, K.A., and Morgan, H.L. "The DATA System", Decision Sciences
Working Paper 78-04-03, Dept. of Decision Sciences, U. of P.,
Philadelphia, PA, 1978.

14. SEED User Manual (B.11), International Data Base Systems, Inc.,
Philadelphia, PA, August 1980.

15. Severance, D.G., and Lohman, G.M. "Differential Files: Their

Application to the Maintenance of Large Databases", ACM Trans on
Database Syst., 1, 3 (September 1976), 256-267.

16. Sherover, C.M. The Human Experience of Time, New York University

Press, New York, 1975.

moo

Page 34

17. Sibley, E. H., Scallan, P. G., and Clemons, E. K. "The Software
Configuration Management Database", NCC, AFIPS Press, 1981, 249 -
255.

18. Sockut, G. H., and Goldberg, R. P. "Database Reorganization -

Principles and Practice", ACM Computing Surveys, 11, 4 (December
1979), 371-395.

RLPORT DVJCUPENTATION PAGE h EA VCC.7
M PL T).GFC

~ U~LRlzcIv ACC E -- 100 NO. 3 RECIPIENT-s rAT AL15C.NLWL'LR81-OS-06 I4 h i~ 3 3a~P~
4. TITLE (aid S~boltie) S. TYPE OF REPORT A PERIOD CCVERED

MEMI: Handling*The Time Dinension in Generalized Fia Technical Report.

DBMS S. PERFORMING ORG. REPORT NUMBER
81- 05=06

7. AUTOR~q) . CONTRACT OR GRANT NUMBeLR(e)
Gad ARIAV and Howard Lee MO)RGAN M~1A903-80-C093--

___ (and N00014-75-C-0462)
I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERSDepartment of Decision Sciences PH4-213-
The Wharton School, univ. of Pennsylvania
Philadelphia, PA 19104 1.ROTDY

11. CONTROLLING OFFICE NAME AND ADDRESS 12 RXs2.T DATE I
Office of-Naval Research. NMROFAG

Department of the Navy 13 NUBRO.AE
DARPA 3Y___________

14 MONITORING AGENCY-NAME &ADDRESS(LdieuIren 1 Conrl)injl~ Olficq)- 15. SECURITY CLASS. (.5 thl. -.Pore

4 unclassified
..1-*IS. DECLASSIFICA2IONrfoOWNGMAOING z

16. DIST RI BUTION ST ALM Ew~T-&f~hlAt. -- _-

approved for public release; distributio' unlimited

17. DISTRIBUTION STATEMENT (of he abet,.ct onteredin Block 20, II dtft....t 0- eprt

19. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue an revere* wide it necessary and #denlt#& by block ... bo)

Time in Information Systems. -Data Base Management'Systems (DBS).
Te-'eral Data Storage

20. ABSTRACT (Continue an r.o.... old. jI u.c...,v mnd ldoatifr by 6isCi numb"t)

The sense of time is implicit in almost all human activity, yet it is rarely
reflected in the computer database views of these activities. This paper offers
a method of dealing with time, modal storage and retrieval, and describes
formal and practical realizations of the concept.

The conceptual framework of Mobdal Data Management reflects three years of
ekcperience Qiththe DATA (IDrnamic Alerting Transaction Anlysis) system (13)

DDNI~ 41473 rooi~S SCSL (continued on reverse
- . SECURITY CLASSIFICATION OF THIS PAGE (W~i. wf PaU"I

A - --- --

(20) cont'ed

in which a time oriented DBMS has been conceived, designed
and actually implemented.

The paper first anchors the Modal Data Management concept in the
context of the relevant research in Information Modelling
and storage technologies, folllowed by a discussion of the architectural
and functional attributes of the DATA system. The major lessons from the
DATA experience are then presented, paying special emphasis to their impact
on the design of future versions of the system.

The concluding comments deal with specific implications of the
Mbdal Data Management in the domains of DRMS usability and
Software Engineering.

K

IA

